Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253637

RESUMO

Metrnl is a secreted protein involved in neurite outgrowth, insulin sensitivity, immunoinflammatory responses, blood lipids and endothelial protection. In this study, we investigated the role of Metrnl in ischemic stroke. Fifty-eight ischemic stroke patients (28 inpatient patients within 2 weeks of onset and 30 emergency patients within 24 h of onset) and 20 healthy controls were enrolled. Serum Metrnl was measured by enzyme-linked immunosorbent assay. We showed that serum Metrnl levels were significantly reduced in both inpatient and emergency patient groups compared with the controls. Different pathological causes for ischemic stroke such as large artery atherosclerosis and small artery occlusion exhibited similar reduced serum Metrnl levels. Transient ischemic attack caused by large artery atherosclerosis without brain infarction also had lower serum Metrnl levels. Metrnl was correlated with some metabolic, inflammatory and clotting parameters. Reduced serum Metrnl was associated with the severity of intracranial arterial stenosis and the presence of ischemic stroke. In order to elucidate the mechanisms underlying the reduced serum Metrnl levels, we established animal models of ischemic stroke in normal mice, atherosclerotic apolipoprotein E-knockout mice and Metrnl-knockout mice by middle cerebral artery occlusion (MCAO) using intraluminal filament or electrocoagulation. We demonstrated that serum Metrnl levels were significantly lower in atherosclerosis mice than normal mice, whereas acute ischemic stroke injury in normal mice and atherosclerosis mice did not alter serum Metrnl levels. Metrnl knockout did not affect acute ischemic stroke injury and death. We conclude that reduced serum Metrnl levels are attributed to the chronic vascular pathogenesis before the onset of ischemic stroke. Metrnl is a potential target for prevention of ischemic stroke.

2.
Stroke Vasc Neurol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286483

RESUMO

The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.

3.
Acta Pharmacol Sin ; 44(9): 1790-1800, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37142683

RESUMO

Meteorin-like (Metrnl) is a novel secreted protein with various biological activities. In this study, we investigated whether and how Metrnl regulated skin wound healing in mice. Global Metrnl gene knockout mice (Metrnl-/-) and endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/-) were generated. Eight-mm-diameter full-thickness excisional wound was made on the dorsum of each mouse. The skin wounds were photographed and analyzed. In C57BL/6 mice, we observed that Metrnl expression levels were markedly increased in skin wound tissues. We found that both global and endothelial cell-specific Metrnl gene knockout significantly retarded mouse skin wound healing, and endothelial Metrnl was the key factor affecting wound healing and angiogenesis. The proliferation, migration and tube formation ability of primary human umbilical vein endothelial cells (HUVECs) were inhibited by Metrnl knockdown, but significantly promoted by addition of recombinant Metrnl (10 ng/mL). Metrnl knockdown abolished the proliferation of endothelial cells stimulated by recombinant VEGFA (10 ng/mL) but not by recombinant bFGF (10 ng/mL). We further revealed that Metrnl deficiency impaired VEGFA downstream AKT/eNOS activation in vitro and in vivo. The damaged angiogenetic activity in Metrnl knockdown HUVECs was partly rescued by addition of AKT activator SC79 (10 µM). In conclusion, Metrnl deficiency retards skin wound healing in mice, which is related to impaired endothelial Metrnl-mediated angiogenesis. Metrnl deficiency impairs angiogenesis by inhibiting AKT/eNOS signaling pathway.


Assuntos
Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Cicatrização
4.
Curr Pharm Biotechnol ; 24(2): 299-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35593333

RESUMO

OBJECTIVE: This study determined for the first time the distribution of intravenous nicotinamide mononucleotide (NMN) and its metabolite nicotinamide adenine dinucleotide (NAD) in normal and ischemic stroke mice, examined the therapeutic effect of NMN on ischemic brain infarction, and evaluated acute toxicity of NMN after intravenous injection of NMN. METHODS: NMN and NAD levels were determined using ultra-high-performance liquid chromatography tandem mass spectrometry in biological samples from mice with or without middle cerebral artery occlusion (MCAO) at different time points post intravenous NMN injection (300 mg/kg). Brain infarction was evaluated 24 h post-MCAO. 2 g/kg NMN was used in the acute toxicity test. RESULTS: Under either normal or MCAO conditions, serum NMN levels sharply increased after intravenous NMN administration and then decreased rapidly within 15 min, while serum NAD levels remained unchanged during 30 min observation. Both substances displayed tissue accumulation over time and stored faster under MCAO conditions, with kidney having the highest concentrations. Particularly, NMN accumulated earlier than NAD in the brain. Moreover, NMN reduced cerebral infarction at 24 h post-MCAO. No acute toxicity was observed for 14 days. NRK1 and SLC12A8 involved in two pathways of NMN uptake exhibited the highest expressions in kidney and colon, respectively, among 11 different tissues. CONCLUSION: NMN distributes to various tissues after intravenous injection and has the ability to enter the brain to boost NAD levels, and exhibits safety and therapeutic effect on acute ischemic stroke injury. High renal distribution of NMN indicates its importance in the kidney.


Assuntos
AVC Isquêmico , Mononucleotídeo de Nicotinamida , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , NAD/metabolismo , Injeções Intravenosas
5.
Acta Pharmacol Sin ; 44(4): 741-751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36229598

RESUMO

Aging is one of the main risk factors for cognitive dysfunction. During aging process, the decrease of brain-derived neurotrophic factor (BDNF) and the impairment of astrocyte function contribute to the cognitive impairment. Metrnl, a neurotrophic factor, promotes neural growth, migration and survival, and supports neural function. In this study, we investigated the role of Metrnl in cognitive functions. D-galactose (D-gal)-induced aging model was used to simulate the process of aging. Cognitive impairment was assessed by the Morris water maze test. We showed that Metrnl expression levels were significantly increased in the hippocampus of D-gal-induced aging mice. Metrnl knockout did not affect the cognitive functions in the baseline state, but aggravated the cognitive impairment in the D-gal-induced aging mice. Furthermore, Metrnl knockout significantly reduced hippocampal BDNF, TrkB, and glial fibrillary acidic protein (GFAP) levels in the D-gal-induced aging mice. In the D-gal-induced aging cell model in vitro, Metrnl levels in the hippocampal astrocytes were significantly increased, and Metrnl knockdown and overexpression regulated the BDNF levels in primary hippocampal astrocytes rather than in neurons. We conclude that Metrnl regulates cognitive functions and hippocampal BDNF levels during aging process. As a neurotrophic factor and an endogenous protein, Metrnl is expected to become a new candidate for the treatment or alleviation of aging-related cognitive dysfunction.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Animais , Camundongos , Envelhecimento/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Galactose , Hipocampo/metabolismo
6.
Chin J Nat Med ; 20(5): 364-377, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35551771

RESUMO

Ma-Mu-Ran Antidiarrheal Capsules (MMRAC) is traditional Chinese medicine that has been used to treat diarrhea caused by acute enteritis (AE) and bacillary dysentery in Xinjiang (China) for many years. However, the potential therapeutic mechanism of MMRAC for AE and its regulatory mechanism on host metabolism is unclear. This study used fecal metabolomics profiling with GC/MS and 16S rRNA gene sequencing analysis to explore the potential regulatory mechanisms of MMRAC on a dextran sulfate sodium salt (DSS)-induced mouse model of AE. Fecal metabolomics-based analyses were performed to detect the differentially expressed metabolites and metabolic pathways. The 16S rRNA gene sequencing analysis was used to assess the altered gut microbes at the genus level and for functional prediction. Moreover, Pearson correlation analysis was used to integrate differentially expressed metabolites and altered bacterial genera. The results revealed that six intestinal bacteria and seven metabolites mediated metabolic disorders (i.e., metabolism of amino acid, carbohydrate, cofactors and vitamins, and lipid) in AE mice. Besides, ten altered microbes mediated the differential expression of eight metabolites and regulated these metabolisms after MMRAC administration. Overall, these findings demonstrate that AE is associated with metabolic disorders and microbial dysbiosis. Further, we present that MMRAC exerts protective effects against AE by improving host metabolism through the intestinal flora.


Assuntos
Antidiarreicos , Enterite , Animais , Antidiarreicos/farmacologia , Cápsulas , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Enterite/genética , Fezes/microbiologia , Genes de RNAr , Metabolômica , Camundongos , RNA Ribossômico 16S/genética
7.
Acta Pharmacol Sin ; 41(12): 1568-1575, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32265491

RESUMO

Dyslipidemia is a risk factor for cardiovascular diseases and type 2 diabetes. Several adipokines play important roles in modulation of blood lipids. Metrnl is a recently identified adipokine, and adipose Metrnl participates in regulation of blood triglyceride (TG). In this study, we generated Metrnl global, intestine-specific and liver-specific knockout mice, and explored the effects of Metrnl on serum lipid parameters. Global knockout of Metrnl had no effects on serum lipid parameters under normal chow diet, but increased blood TG by 14%, and decreased total cholesterol (TC) by 16% and high density lipoprotein cholesterol (HDL-C) by 24% under high fat diet. Nevertheless, intestine-specific knockout of Metrnl did not alter the serum lipids parameters under normal chow diet or high fat diet. Notably, liver-specific knockout of Metrnl decreased HDL-C by 24%, TC by 20% and low density lipoprotein cholesterol (LDL-C) by 16% without alterations of blood TG and nonesterified fatty acids (NEFA) under high fat diet. But deficiency of Metrnl in liver did not change VLDL secretion and expression of lipid synthetic and metabolic genes. We conclude that tissue-specific Metrnl controls different components of blood lipids. In addition to modulation of blood TG by adipose Metrnl, blood HDL-C is regulated by liver Metrnl.


Assuntos
HDL-Colesterol/metabolismo , Fatores de Crescimento Neural/deficiência , Triglicerídeos/metabolismo , Animais , HDL-Colesterol/sangue , Dieta Hiperlipídica , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Triglicerídeos/sangue
8.
Chem Pharm Bull (Tokyo) ; 66(4): 391-398, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29398678

RESUMO

Metrnl is a newly discovered secreted protein with neurotrophic activity and metabolic effect, while in earlier studies its circulating level in human was not explored. We evaluated two commercial enzyme-linked immunosorbent assay kits (DY7867-05, R&D Systems and SK00478-02, Aviscera Bioscience) for the detection of human circulating Metrnl. The DY7867-05 kit showed superiority over the SK00478-02 kit since it generated better curve fitting degree, smaller variation among tests, higher inter-assay reproducibility and better specificity, and could effectively detect human Metrnl in six types of blood samples. Subsequent analysis was performed using the DY7867-05 kit. Sample storage conditions were investigated. No gender difference in circulating Metrnl levels was found, while people with newly diagnosed type 2 diabetes mellitus (T2DM) had significantly lower Metrnl levels compared to the healthy controls.


Assuntos
Adipocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Ensaio de Imunoadsorção Enzimática/normas , Adulto , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Humanos , Masculino
9.
Br J Pharmacol ; 174(21): 3823-3836, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28812311

RESUMO

BACKGROUND AND PURPOSE: Tissue plasminogen activator (tPA) is the only approved pharmacological therapy for acute brain ischaemia; however, a major limitation of tPA is the haemorrhagic transformation that follows tPA treatment. Here, we determined whether nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide biosynthesis, affects tPA-induced haemorrhagic transformation. EXPERIMENTAL APPROACH: Middle cerebral artery occlusion (MCAO) was achieved in CD1 mice by introducing a filament to the left MCA for 5 h. When the filament was removed for reperfusion, tPA was infused via the tail vein. A single dose of NMN was injected i.p. (300 mg·kg-1 ). Mice were killed at 24 h post ischaemia, and their brains were evaluated for brain infarction, oedema, haemoglobin content, apoptosis, neuroinflammation, blood-brain barrier (BBB) permeability, the expression of tight junction proteins (TJPs) and the activity/expression of MMPs. KEY RESULTS: In the mice infused with tPA at 5 h post ischaemia, there were significant increases in mortality, brain infarction, brain oedema, brain haemoglobin level, neural apoptosis, Iba-1 staining (microglia activation) and myeloperoxidase staining (neutrophil infiltration). All these tPA-induced alterations were significantly prevented by NMN administration. Mechanistically, the delayed tPA treatment increased BBB permeability by down-regulating TJPs, including claudin-1, occludin and zonula occludens-1, and enhancing the activities and protein expression of MMP9 and MMP2. Similarly, NMN administration partly blocked these tPA-induced molecular changes. CONCLUSIONS AND IMPLICATIONS: Our results demonstrate that NMN ameliorates tPA-induced haemorrhagic transformation in brain ischaemia by maintaining the integrity of the BBB.


Assuntos
Isquemia Encefálica/tratamento farmacológico , NAD/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Ativador de Plasminogênio Tecidual/toxicidade , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/patologia , Hemorragias Intracranianas/induzido quimicamente , Hemorragias Intracranianas/prevenção & controle , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Proteínas de Junções Íntimas/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagem
10.
Acta Pharmacol Sin ; 37(11): 1458-1466, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27546006

RESUMO

AIM: Metrnl is a novel secreted protein, but its physiological roles remain elusive. In this study, we investigated the tissue expression pattern of Metrnl in humans and explored its possible physiological role in the tissues with most highly expressed levels. METHODS: A human tissue microarray containing 19 types of tissues from 69 donors was used to examine the tissue expression pattern of Metrnl, and the expression pattern was further verified in fresh human and mouse tissues. Intestinal epithelial cell-specific Metrnl knockout mice were generated, which were used to analyze the physiological roles of Metrnl. RESULTS: Metrnl was the most highly expressed in the human gastrointestinal tract, and was specifically expressed in the intestinal epithelium. Consistent with this, Metrnl mRNA was also most highly expressed in the mouse gastrointestinal tract among the 14 types of tissues tested. In the intestinal epithelial cell-specific Metrnl knockout mice, the Metrnl levels in the gut fluid were significantly reduced, whereas the Metrnl serum levels showed a trend towards a reduction, but this change was not statistically significant. This cell-specific deletion of Metrnl did not affect body weight, food intake, blood glucose, colon length and histology, intestinal permeability, mucus content or mucin 2 expression under physiological conditions, but statistically decreased the expression of antimicrobial peptides, such as regenerating islet-derived 3 gamma (Reg3g) and lactotransferrin. CONCLUSION: Metrnl is highly expressed in the intestinal epithelial cells of humans and mice, which mainly contributes to the local gut Metrnl levels and affects the serum Metrnl level to a lesser extent. Metrnl plays a role in maintaining gut antimicrobial peptides.


Assuntos
Adipocinas/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Mucosa Intestinal/metabolismo , Fatores de Crescimento Neural/metabolismo , Adulto , Idoso , Animais , Colo/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Lactoferrina/metabolismo , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , Especificidade de Órgãos , Proteínas Associadas a Pancreatite , Proteínas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Análise Serial de Tecidos
11.
Acta Pharmacol Sin ; 37(5): 571-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27063217

RESUMO

Secreted proteins play critical roles in physiological and pathological processes and can be used as biomarkers and therapies for aging and disease. Metrnl is a novel secreted protein homologous to the neurotrophin Metrn. But this protein, unlike Metrn that is mainly expressed in the brain, shows a relatively wider distribution in the body with high levels of expression in white adipose tissue and barrier tissues. This protein plays important roles in neural development, white adipose browning and insulin sensitization. Based on its expression and distinct functions, this protein is also called Cometin, Subfatin and Interleukin 39, which refer to its neurotrophic effect, adipokine function and the possible action as a cytokine, respectively. The spectrum of Metrnl functions remains to be determined, and the mechanisms of Metrnl action need to be elucidated. In this review, we focus on the discovery, structural characteristics, expression pattern and physiological functions of Metrnl, which will assist in developing this protein as a new therapeutic target or agent.


Assuntos
Adipocinas/metabolismo , Fatores de Crescimento Neural/metabolismo , Adipocinas/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Humanos , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos
12.
Diabetes ; 64(12): 4011-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26307585

RESUMO

Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-specific transgenic overexpression of Metrnl prevents insulin resistance induced by HFD or leptin deletion. Body weight and adipose content are not changed by adipocyte Metrnl. Consistently, no correlation is found between serum Metrnl level and BMI in humans. Metrnl promotes white adipocyte differentiation, expandability, and lipid metabolism and inhibits adipose inflammation to form functional fat, which contributes to its activity against insulin resistance. The insulin sensitization of Metrnl is blocked by PPARγ inhibitors or knockdown. However, Metrnl does not drive white adipose browning. Acute intravenous injection of recombinant Metrnl has no hypoglycemic effect, and 1-week intravenous administration of Metrnl is unable to rescue insulin resistance exacerbated by adipocyte Metrnl deficiency. Our results suggest adipocyte Metrnl controls insulin sensitivity at least via its local autocrine/paracrine action through the PPARγ pathway. Adipocyte Metrnl is an inherent insulin sensitizer and may become a therapeutic target for insulin resistance.


Assuntos
Adipócitos Brancos/metabolismo , Adipocinas/sangue , Resistência à Insulina , Fatores de Crescimento Neural/metabolismo , PPAR gama/agonistas , Transdução de Sinais , Células 3T3-L1 , Adipócitos Brancos/citologia , Adipogenia , Adiposidade , Animais , Índice de Massa Corporal , Células CHO , Cricetulus , Cruzamentos Genéticos , Dieta Hiperlipídica/efeitos adversos , Leptina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Crescimento Neural/sangue , Fatores de Crescimento Neural/genética , PPAR gama/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , Proteínas Recombinantes/metabolismo
13.
CNS Neurosci Ther ; 20(4): 344-54, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24393292

RESUMO

AIMS: Adipose tissue releases adipokines that play important roles in metabolic and cardio-cerebro-vascular homeostasis. This study was to discover novel adipokines using caloric restriction model. METHODS: Adipokine candidates were captured by gene array and bioinformatics analysis and verified by preparation of recombinant protein and antibody. RESULTS: We established a potential secreted protein database containing 208 genes and identified a novel adipokine, Subfatin, that was the highest expressed in subcutaneous fat of both rodents and humans among 15 detected tissues. The secreted mammalian Subfatin was a glycosylated protein. Subfatin was located diffusely throughout the adipose tissue except lipid droplets, with comparable expression between adipocytes and stromal cells, but much lower expression in macrophages than adipocytes. Subfatin was downregulated in white adipose tissue of caloric restriction rats, whereas dramatically upregulated during white adipocyte differentiation as well as in white adipose tissue of diet-induced obese mice. Subfatin was annotated as Meteorin-like (Metrnl) in public databases, a similar transcript of Meteorin (Metrn, also known as glial cell differentiation regulator). Meteorin displayed a brain-specific expression and was scarce in various adipose tissues, in contrast to the tissue expression patterns of Subfatin. CONCLUSIONS: Subfatin is a novel adipokine regulated by adipogenesis and obesity, with tissue distribution different from its homologue Meteorin.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Adipogenia/fisiologia , Adipocinas/genética , Tecido Adiposo Branco/metabolismo , Animais , Restrição Calórica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Gordura Subcutânea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA